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Abstract

The presence of social biases in large lan-
guage models (LLMs) has become a signif-
icant concern in AI research. These biases,
often embedded in training data, can perpet-
uate harmful stereotypes and distort decision-
making processes. When LLMs are integrated
into ranking systems, they can propagate these
biases, leading to unfair outcomes in critical
applications such as search engines and recom-
mendation systems. Backpack Language Mod-
els (Hewitt et al., 2023) are effective at learn-
ing diverse word senses and debiasing gen-
erative language models. Unlike traditional
transformer-based models that treat text se-
quences as monolithic structures, Backpack-
LM generates outputs as weighted combina-
tions of non-contextual, learned word aspects,
also known as senses. Leveraging this archi-
tecture, we propose a framework for debias-
ing ranking tasks. Our experimental results.
show that this framework effectively mitigates
gender bias in text retrieval and ranking with
minimal degradation in performance, offering
a more balanced approach to information re-
trieval.

1 Introduction

Ranking and retrieval are core components of mod-
ern information systems, underpinning search, rec-
ommendation, and decision-support pipelines. Re-
cent advances in large language models (LLMs)
such as LLaMA2 (Touvron et al., 2023) and T5
(Raffel et al., 2023) have substantially improved
effectiveness when used as rankers or re-rankers
(Ma et al., 2023; Zhuang et al., 2022). However,
integrating LLMs into retrieval workflows raises
well-documented concerns about fairness and bias.
Because these models are trained on large-scale
web corpora that encode societal stereotypes, in-
cluding those related to gender and race (Nadeem
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et al., 2021; Kotek et al., 2023), they can propa-
gate or even amplify harmful associations. For
instance, an LLM-informed ranker may implic-
itly associate specific occupations with a particu-
lar gender, yielding systematically skewed results
in hiring or recommendation scenarios(Chen et al.,
2025).

Decades of research in psychology and soci-
ology show that gender stereotypes shape ex-
pectations, judgments, and information process-
ing (Burgess and Borgida, 1999; Ellemers, 2018;
Heilman, 2012), contributing to biased treatment
and outcomes (Swim et al., 1989) and often aris-
ing from misperceptions (Huddy and Terkildsen,
1993). Within Information Retrieval (IR), these
concerns are salient because neural embeddings
and representations—widely used for matching
and ranking—have been shown to encode stereo-
typical regularities (Rekabsaz and Schedl, 2020;
Sun et al., 2019; Bolukbasi et al., 2016; Fabris
et al., 2020). Such biases pose practical risks by
reinforcing gendered patterns in retrieved content.
Prior work has both analyzed how biased embed-
dings affect ranked outputs (Rekabsaz and Schedl,
2020; Fabris et al., 2020) and proposed metrics to
quantify gendered responses in ranked lists (Fabris
et al., 2020).

Mitigation strategies in IR have largely been
out-of-process: post hoc interventions that oper-
ate external to the model, including re-ranking,
fairness-aware scoring, or embedding adjustments
(Zehlike et al., 2017; Asudeh et al., 2019; Zerveas
et al., 2022). While effective in some settings,
these approaches often require additional opti-
mization or fine-tuning, can be computationally
costly for large models, and may offer limited in-
terpretability or controllability during deployment.
This motivates an in-process perspective, in which
fairness control is implemented within the model’s
inference procedure itself—exposing explicit, in-
terpretable levers to regulate bias without retrain-
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Figure 1: Overview of our proposed bias-controllable
ranking framework. Each token is decomposed into
multiple non-contextual sense vectors. We compute the
sensitivity of each sense to a targeted aspect (e.g., gen-
der), and apply a learned reweighting policy Ms(ℓ) to
selectively amplify or suppress individual senses. The
reweighted representations are aggregated and passed
through a two-layer MLP to produce a final relevance
score.

ing the (potentially very large) backbone.
Backpack Language Models (Backpack-LMs)

(Hewitt et al., 2023) expose interpretable, non-
contextual sense vectors for each token that are lin-
early reweighted by context, enabling in-process
control at inference. We leverage this structure for
fair ranking by (i) estimating per-sense sensitivity
to a targeted attribute (e.g., gender) using paired
lexicons, and (ii) applying a mapping policy Ms

that reweights senses during scoring. The inter-
vention is training-free with respect to fairness (no
additional fine-tuning) and integrates directly into
our listwise ranking pipeline. Empirically, it re-
duces gender bias (RaB/ARaB) with minimal im-
pact on effectiveness (MRR/NDCG), providing a
practical and interpretable route to fairer retrieval.

2 Preliminaries

Ranking Systems. Given a query qi and a finite
candidate set Di = {di1, . . . , dim}, a ranking sys-
tem outputs a permutation of the candidates. The
ground truth for query i is an ordinal label vector
yi = (yi1, . . . , yim) with yij ∈ {1, . . . ,m}, where
lower values indicate better rank (ties permitted).
We parameterize a scoring function fθ that maps
each querydocument pair (qi, dij) to a real-valued
score,

sij = fθ(qi, dij) ∈ R.

A full ranking is induced by sorting the scores
in descending order, π̂i = argsort↓(si1, . . . , sim).
Training minimizes a loss that encourages order
consistency between yi and the predicted scores,
i.e., items with better (lower) ground-truth ranks
should receive higher scores.

Backpack Architecture. Let V denote a finite vo-
cabulary and x1:n = (x1, . . . , xn), with xi ∈ V , an
input token sequence. The Backpack architecture
maps x1:n to a sequence of output vectors o1:n =
(o1, . . . , on), oi ∈ Rd. For each token x ∈ V , the
model stores k sense vectors C(x)1, . . . , C(x)k,
where C : V → Rd×k defines a multi-vector, non-
contextual embedding space that captures distinct
senses or facets of a word.

Contextualization is achieved by aggregating
sense vectors across the sequence with learned
weights. Formally,

oi =

n∑
j=1

k∑
ℓ=1

αℓij C(xj)ℓ, (1)

where α ∈ Rk×n×n are context-dependent
weights produced by a function A : Vn →
Rk×n×n, i.e., α = A(x1:n). Here, C(xj)ℓ ∈ Rd

denotes the ℓ-th sense vector associated with token
xj .

The model defines a distribution over an output
space Y via a log-linear transformation of the se-
quence representation o1:n ∈ Rd×n:

p(y | o1:n) = Softmax
(
E(o1:n)

)
, (2)

where E : Rd×n → R|Y| is a linear map and
y ∈ Y . This construction preserves a log-linear de-
pendency on the underlying sense vectors C(xj)ℓ,
enabling fine-grained attribution of predictive in-
fluence to individual senses across contexts.

3 Methodology

In this section, we detail our proposed frame-
work. To leverage the pretrained knowledge of
the Backpack-LM for ranking tasks, we replace
the final linear layer of the language model with
a scalar output layer with sigmoid activation. We
then fine-tune the pretrained model on the ranking
task using the listwise softmax cross-entropy loss
(Bruch et al., 2019), which optimizes ranking by
considering the entire list rather than treating doc-
uments individually or in pairs. For a given query
qi, where yij represents the ground-truth relevance
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of document dij and ŷij denotes our model’s pre-
dicted score, the loss is defined as:

LSoftmax(yi, ŷi) = −
m∑

j=1

yij log

(
exp(ŷij)∑
j′ exp(ŷij′)

)
. (3)

As mentioned in Section 2, given an input token se-
quence x1:n, the Backpack model projects each to-
ken xj into k vectors C(xj)i, for i ∈ {1, 2, . . . , k},
independently of other tokens. During the infer-
ence phase, we aim to disentangle and control dif-
ferent aspects of language, including potential bi-
ases like gender bias. To this end, we propose a
two-step heuristic as follows:

(i) Sensitivity Estimation. We compute the sen-
sitivity of each sense vector, denoted as s =
(s1, . . . , sk) ∈ Rk, to identify those most relevant
to the targeted aspect. This is done using an auxil-
iary set of paired words Daux = {(d−i , d

+
i )}i, cor-

responding to a specific attribute such as gender
(e.g., (“He”, “She”)). Each sensitivity score si is
computed as:

sℓ =
1

|Daux|
∑

(d−,d+)∈Daux

⟨
C(d−)ℓ, C(d+)ℓ

⟩
, (4)

where ⟨·, ·⟩ denotes the cosine similarity between
the i-th normalized sense vectors of the word pair.
Intuitively, lower values of si indicate higher sen-
sitivity to the targeted aspect, enabling us to sup-
press or amplify these components through some
mapping policy Ms and thereby control the bias
present in the final output score.

(ii) BiasControlled Reweighting. We then define
Ms : {1, · · · , k} → R+, a mapping policy that as-
signs a positive weight to each sense index. When
Ms(ℓ) ≥ 1, the influence of the ℓ-th sense is am-
plified; otherwise, it is suppressed. Using this pol-
icy, the debiased output vector õi is computed as:

õi =

n∑
j=1

k∑
ℓ=1

Ms(ℓ)αℓij C(xj)ℓ, (5)

where αℓij denotes the contextual attention
weights and C(xj)ℓ the ℓ-th sense vector of token
xj . Through this framework, i.e., by adjusting the
mapping policy Ms, we can directly control the in-
fluence of the targeted social aspect (e.g., gender)
in the final representation. This representation, õi,
is passed through a two-layer MLP to produce a
scalar score, which represents the document’s pre-
dicted relevance.

As a result, our method enables a controllable
ranking framework that supports fine-grained fair-
ness interventions during inference. By selectively
amplifying or suppressing specific sense vectors,
we can steer the model’s behavior toward fairer
retrieval outcomes, without requiring additional
training or structural modifications to the underly-
ing language model.

4 Experiments

Experimental Setup. Our experiments focus on
controlling gender bias in document ranking. We
begin by evaluating the general ranking perfor-
mance of our proposed architecture, which in-
tegrates a 170M-parameter pretrained Backpack-
based backbone1 with a scalar output layer. We
compare its performance against a similarly sized
GPT-2 model, demonstrating that fine-tuning a
decoder-only ranker can achieve competitive re-
sults on ranking tasks. All models are fine-tuned
on the MS MARCO dataset (Bajaj et al., 2018) us-
ing the listwise softmax cross-entropy loss. Train-
ing is performed for 4 epochs with a learning rate
of 1 × 10−5. Next, we evaluate our model on
the dataset introduced by (Rekabsaz and Schedl,
2020) to assess gender bias in the ranking out-
puts. The evaluation is conducted across multiple
cut-off values (5, 10, 20, 30, and 40), and the re-
sults are presented in Table 2. We use RaB and
ARaB to measure gender fairness, and MRR@10,
NDCG@5, and NDCG@10 to assess ranking per-
formance2.

Results. Table 1 presents the ranking perfor-
mance of different backbone variants. The results
show that our approach consistently outperforms
the GPT-2 baseline across all metrics. These find-
ings confirm that a decoder-only ranker, when fine-
tuned appropriately, can achieve strong ranking
performance.

To evaluate the controllability of gender bias
in our framework, we introduce a hyperparame-
ter α. We identify the two most gender-sensitive
sense vectors (i.e., those with the lowest sensitiv-
ity scores) and scale their influence by α. Lower
values of α correspond to stronger suppression
of gender-related information. Table 2 reports
RaB and ARaB metrics at cut-off values t ∈
{10, 20, 30, 40} for our method and several base-

1https://huggingface.co/stanfordnlp/backpack-gpt2
2Further details about the dataset, baselines, and the mea-

surement metrics are provided in Appendices A, B, and C.
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Figure 2: Effect of the controlling weight α on the
trade-off between ranking performance (NDCG@10)
and gender fairness. Lower values of α improve fair-
ness with minimal loss in performance.

Table 1: MS MARCO ranking performance across dif-
ferent backbone variants. The best scores are high-
lighted in bold. As expected, decreasing the value of
α slightly reduces ranking performance, but the impact
is minimal, indicating that our framework maintains ro-
bust effectiveness even under fairness constraints.

Backbone MRR@10 NDCG@5 NDCG@10

GPT-2 0.3156 0.3448 0.3843
BackPack (α = 0.5) 0.3252 0.3563 0.3947
BackPack (α = 0.7) 0.3298 0.3601 0.3985
BackPack (α = 1.0) 0.3343 0.3640 0.4025

lines. Bold values indicate the lowest (i.e., best)
bias scores. Figure 2 illustrates the trade-off be-
tween gender fairness and ranking performance as
the value of α is varied. As expected, decreasing
α improves fairness by reducing bias, with only a
marginal decrease in ranking quality.

5 Related Work
LLMs have become foundational in applications
such as search engines (Xiong et al., 2024) and
machine translation (Thirunavukarasu et al., 2023).
In ranking and retrieval systems, LLMs enhance
contextual understanding, with models like RAG
(Lewis et al., 2020) improving response rele-
vance by grounding generation in retrieved con-
tent (Salemi and Zamani, 2024). Encoder-decoder
architectures, including MonoT5 and ListT5 (Ge
et al., 2021; Yoon et al., 2024b), further boost rank-
ing performance through joint modeling of queries
and documents.

However, LLMs trained on large-scale web data
often inherit societal biases (Nadeem et al., 2021;
Kotek et al., 2023), leading to unfair associa-
tions, such as linking nurse with women and doc-
tor with men (Zhao et al., 2018)—and reinforc-
ing stereotypes (Navigli et al., 2023; Omiye et al.,

Table 2: Evaluation of gender bias in retrieval rankings
measured by Rank Bias (RaB) and Average Rank Bias
(ARaB) at cutoffs 10, 20, 30, and 40. Values closer to
zero indicate less gender bias in the top-ranked docu-
ments. Our model with α = 0.5 consistently achieves
the lowest bias across all metrics compared to base-
lines.

TF Boolean

Model RaB ARaB RaB ARaB

Cut-off: 10

BM25 0.062 0.063 0.048 0.044
PACRR 0.080 0.084 0.062 0.063
MP 0.065 0.072 0.052 0.056
KNRM 0.067 0.064 0.051 0.051
ConvKNRM 0.080 0.077 0.064 0.060
Ours (α = 1) 0.064 0.064 0.047 0.047
Ours (α = 0.5) 0.053 0.056 0.039 0.042

Cut-off: 20

BM25 0.060 0.062 0.048 0.046
PACRR 0.073 0.081 0.058 0.061
MP 0.063 0.068 0.052 0.054
KNRM 0.068 0.066 0.054 0.052
ConvKNRM 0.071 0.075 0.058 0.059
Ours (α = 1) 0.058 0.062 0.045 0.046
Ours (α = 0.5) 0.051 0.053 0.040 0.041

Cut-off: 30

BM25 0.058 0.060 0.048 0.047
PACRR 0.070 0.078 0.057 0.060
MP 0.059 0.066 0.049 0.053
KNRM 0.068 0.067 0.055 0.053
ConvKNRM 0.069 0.074 0.057 0.059
Ours (α = 1) 0.061 0.061 0.048 0.046
Ours (α = 0.5) 0.052 0.053 0.041 0.041

Cut-off: 40

BM25 0.057 0.060 0.048 0.047
PACRR 0.066 0.076 0.055 0.059
MP 0.055 0.064 0.045 0.051
KNRM 0.067 0.067 0.056 0.054
ConvKNRM 0.068 0.073 0.056 0.059
Ours (α = 1) 0.059 0.061 0.048 0.047
Ours (α = 0.5) 0.053 0.053 0.043 0.041

2023). When deployed in retrieval tasks, these bi-
ases risk amplifying disparities, especially in sen-
sitive domains like hiring and healthcare (Bigdeli
et al., 2021; Otterbacher, 2018; Venkatasubrama-
nian et al., 2020; Sarr and Appert, 2021).

6 Conclusion
In this work, we introduced a bias-controllable
ranking framework based on Backpack Language
Models. By leveraging the interpretable structure
of sense vectors, our method enables in-process
gender bias mitigation during inference through a
simple reweighting mechanism. Experimental re-
sults demonstrate that our approach significantly
reduces gender bias while preserving ranking per-
formance, offering a practical and effective solu-
tion for fair information retrieval.
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7 Limitation

A key limitation concerns the scale of the Back-
pack model used in this study. For fair and mean-
ingful comparison across ranking systems, it is
important that models operate at a similar capac-
ity and parameter budget. Discrepancies in model
size can confound performance differences, mak-
ing it difficult to attribute gains or losses to the
ranking methodology itself rather than to model
capacity. Additionally, while we address specific
forms of social bias such as gender, broader cate-
gories of social bias in ranking—such as those re-
lated to race, age, or socioeconomic status—lack
well-established and generalizable evaluation met-
rics. This limits the ability to comprehensively as-
sess fairness interventions and their downstream
impacts.

In addition, although our biascontrol re-ranking
successfully alters the scores with respect to gen-
der (see Appendix D), the simplified recruitment
example shows that the overall ranking remains
largely unchanged—similar to outcomes observed
in other ranking experiments. This suggests that
when absolute score differences are small, bias ad-
justment alone may be insufficient to meaningfully
impact final rankings. To overcome this limitation,
future work could explore more advanced rank-
ing architectures, such as Rank-T5 (Zhuang et al.,
2022) or other transformer-based rankers, and in-
corporate bias-adjusted scores from the Backpack-
LM re-ranker to recalibrate the final rankings, po-
tentially leading to fairer outcomes.

8 Ethical Considerations

This work addresses the ethical challenge of so-
cial bias in AI-powered ranking systems, with a
particular focus on gender bias. Our proposed
method aims to promote fairness and transparency
in information retrieval by enabling controllable
debiasing without retraining. While our evalua-
tions focus on gender, we acknowledge that bias in
AI spans multiple dimensions, including race, age,
and socioeconomic status. Our method is designed
to be generalizable, but further work is needed to
adapt it to other forms of bias.

We emphasize that no demographic or identity-
specific user data was used in this study. All
benchmarks were conducted on publicly available
datasets, and our experiments respect user privacy
and data protection standards. Additionally, we
caution that fairness interventions may interact in

complex ways with model performance and soci-
etal norms, and their deployment should be accom-
panied by stakeholder input and domain-specific
considerations.
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Appendix

A Datasets

We leverage the official training split of the MS
MARCO passage ranking dataset (Bajaj et al.,
2018) , which contains approximately 530,000
training queries and 6,800 development queries.
The candidate passages are drawn from a large
corpus of over 8.8 million documents, with each
query annotated using binary relevance labels—
1 indicating relevance and 0 indicating non-
relevance. For evaluation, we utilize the offi-
cial development set, using the Top-100 BM25-
retrieved passages, obtained from the Pyserini
(Lin et al., 2021) repository’s prebuilt index.

B Bias Measurement Benchmark

(Rekabsaz and Schedl, 2020) proposes an effective
framework for measuring gender bias in retrieval
systems by assessing the bias in documents re-
trieved for gender-neutral queries. They introduce
metrics to quantify this bias and compare neural
ranking models with BM25. Their findings indi-
cate that BM25 exhibits less gender bias according
to both proposed metrics.

Baseline Models.

• BM25 (Robertson and Zaragoza, 2009): de-
fault parameters k1 = 0.9, b = 0.4.

• KNRM (Xiong et al., 2017), MatchPyramid
(Pang et al., 2016), PACRR (Hui et al., 2017),
ConvKNRM (Dai et al., 2018): all use 300-
dimensional GloVe embeddings (Pennington
et al., 2014) and follow hyperparameters
from their original codebases.

• BERT-Base/Large (Nogueira and Cho,
2020; Devlin et al., 2019): fine-tuned on MS
MARCO passages for 2 epochs, learning
rate 2 × 10−5, batch size 16, max sequence
length 512.

Evaluation Metrics. This framework consists of
two main components:

(i) Document Gender Magnitude Measure-
ments: Gender magnitude is defined using prede-
fined sets of gender-specific words. For instance,
Gf = {she, woman, her} represents female-
associated terms, and Gm = {he, man, him} rep-
resents male-associated terms. The gender magni-

tude of a document d is computed using two vari-
ants.

1. Term Frequency (TF): The magnitude is cal-
culated as the sum of the logarithmic frequencies
of gender-specific words:

magf (d) =
∑
w∈Gf

log(#(w, d)) (6)

2. Boolean: variant, the magnitude is set to 1 if
any gender-specific word is present in the docu-
ment, and 0 otherwise:

magf (d) =

{
1, if

∑
w∈Gf

#(w, d) > 0

0, otherwise
(7)

Here, #(w, d) denotes the count of word w in doc-
ument d. The same formulation is applied to com-
pute magm(d) using the male word set Gm.

(ii) Retrieval Gender Bias Metrics: To quantify
gender bias in ranking results, two metrics are
used.

1. Rank Bias (RaB): metric measures the differ-
ence between the female and male gender magni-
tudes in the top t ranked documents for a given
query:

RaBt(q) =
1

t

t∑
i=1

(
magf (d(q)i)− magm(d(q)i)

)
(8)

2. Average Rank Bias (ARaB): aggregates RaB
over the top t positions:

ARaBt(q) =
1

t

t∑
x=1

RaBx(q) (9)

Here, q denotes the query, d(q)i is the i-th docu-
ment in the ranked list for query q, and t is the
cutoff threshold. The final bias scores RaBt and
ARaBt are computed by averaging these values
across all queries.

C Ranking Evaluation

We measure performance using Mean Recip-
rocal Rank (MRR@10) (Voorhees and Tice,
2000), which evaluates how high the first rel-
evant document appears in the top 10 results,
and Normalized Discounted Cumulative Gain
(NDCG@5, NDCG@10)(Järvelin and Kekäläi-
nen, 2002) which assesses ranking quality while
accounting for both document relevance and posi-
tion.
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D Additional Experiments

To illustrate the presence of gender bias and to
evaluate our model’s effectiveness in mitigating it,
we present a simplified recruitmentstyle retrieval
task. Below, we provide the query prompt and
a concise table of candidate profiles employed in
this experiment.
RecruitmentStyle Retrieval Task: The follow-
ing prompt and candidate documents define our
recruitmentstyle retrieval task. The query is de-
signed to identify the most qualified candidates
for a senior software engineering position based
on their professional experience and achievements.
Each document summarizes a candidate’s back-
ground. We systematically vary the biascontrol
parameter α to demonstrate the model’s capacity
to adjust rankings and reduce gender bias.

query = "Who are the most qualified candidates
for a senior software engineering role
based on experience and achievements?"

Listing 1: Query and documents used for ranking
experiment

Table 3: Profile summary of candidates (with explicit
gender labels).

Name Gender Key Qualifications

Sarah Female 12+ yrs systems
John Male 9 yrs full-stack
Emily Female 15 yrs ML

Note that candidates 1 and 3 are female
and, despite having more professional experience,
the rankers do not prioritize them for a male-
dominated role. However, varying the bias pa-
rameter α alters the scores, and the score differ-
ences for male-biased documents are almost al-
ways greater than those for female-biased docu-
ments. The resulting ranking outcomes are illus-
trated in Figure 3.

Although the model successfully reranks candi-
dates independently of gender, the relative order-
ing remains unchanged in this scenario. To fur-
ther enhance sensitivity to qualification differen-
tials, one could adopt a more advanced ranking
architecture (e.g., RankT5 (Zhuang et al., 2022;
Yoon et al., 2024a) or another transformerbased
ranker) and integrate the biasadjusted scores pro-
duced by the BackpackLM reranker into the final
scoring mechanism.
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Figure 3: Ranking results of the candidates based on
their qualifications.

For example, in this experiment the biascontrol
adjustment for the first and third candidates differs
by approximately 0.031 and 0.035, respectively,
whereas the second candidate’s score shifts by ap-
proximately 0.039. Leveraging these differential
adjustments to recalibrate final ranking scores may
yield a biasmitigated ordering but with a better ac-
curacy.
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